The velocity distribution in the boundary layer is given as \(\fr

The velocity distribution in the boundary layer is given as \(\fr
|

The velocity distribution in the boundary layer is given as \(\frac{u}{U}=\frac{y}{\delta }\). The dimensionless-profile shape factor is

A. 1/3

B. 3

C. 2

D. 1/2

Please scroll down to see the correct answer and solution guide.

Right Answer is: B

SOLUTION

Concept:

Dimensionless profile shape factor (H) = Displacement thickness/Momentum thickness = δ*/θ

\({{\delta }^{*}}=\mathop{\int }_{0}^{\delta }\left( 1-\frac{u}{U} \right)dy,\theta =\mathop{\int }_{0}^{\delta }\frac{u}{U}\left( 1-\frac{u}{U} \right)dy\)

\(\frac{u}{U}=\frac{y}{\delta }\)

\({{\delta }^{*}}=\mathop{\int }_{0}^{\delta }\left( 1-\frac{y}{\delta } \right)dy=\left\{ y-\frac{{{y}^{2}}}{2\delta } \right\}_{0}^{\delta }=\delta -\frac{{{\delta }^{2}}}{2\delta }=\frac{\delta }{2}\)

\(\theta =\mathop{\int }_{0}^{\delta }\frac{u}{U}\left( 1-\frac{u}{U} \right)dy=\mathop{\int }_{0}^{\delta }\frac{y}{\delta }\left( 1-\frac{y}{\delta } \right)dy\)

\(\theta =\mathop{\int }_{0}^{\delta }\left( \frac{y}{\delta }-\frac{{{y}^{2}}}{{{\delta }^{2}}} \right)dy\)

\(=\left\{ \frac{{{y}^{2}}}{2\delta }-\frac{{{y}^{3}}}{3{{\delta }^{2}}} \right\}_{0}^{\delta }\)

\(\Rightarrow \frac{\delta }{2}-\frac{\delta }{3}=\frac{\delta }{6}\)

\(H=\frac{{{\delta }^{*}}}{\theta }=\frac{\frac{\delta }{2}}{\frac{\delta }{6}}=3\)

So, shape factor (H) = 3